Human identification is one of the most common and critical tasks for condition monitoring, human-machine interaction, and providing assistive services in smart environments. Recently, human gait has gained new attention as a biometric for identification to achieve contactless identification from a distance robust to physical appearances. However, an important aspect of gait identification through wearables and image-based systems alike is accurate identification when limited information is available, for example, when only a fraction of the whole gait cycle or only a part of the subject body is visible. In this paper, we present a gait identification technique based on temporal and descriptive statistic parameters of different gait phases as the features and we investigate the performance of using only single gait phases for the identification task using a minimum number of sensors. It was shown that it is possible to achieve high accuracy of over 95.5 percent by monitoring a single phase of the whole gait cycle through only a single sensor. It was also shown that the proposed methodology could be used to achieve 100 percent identification accuracy when the whole gait cycle was monitored through pelvis and foot sensors combined. The ANN was found to be more robust to fewer data features compared to SVM and was concluded as the best machine algorithm for the purpose.


翻译:人类识别是条件监测、人体机器互动和在智能环境中提供辅助服务方面最常见和最关键的任务之一。最近,人类动作作为一种生物鉴别技术获得了新的关注,以生物鉴别方式进行识别,以便从坚固的距离到物理的外观,实现无接触的识别;然而,通过穿戴和图像系统等方法进行步态识别的一个重要方面,是在可获得有限信息的情况下准确识别的,例如,只有整个步态周期的一小部分或只是主体的一部分是可见的。在本文件中,我们介绍了一种步态识别技术,其依据是不同步态阶段的时间和描述统计参数,作为特征,我们调查仅使用单一步态阶段使用最低数量的传感器进行身份识别任务的性能,显示仅通过单一传感器监测整个步态周期的单一阶段,就有可能达到95.5%的高度准确性;还表明,在通过毛球和脚传感器结合监测整个步态周期时,可以使用拟议方法实现100%的身份识别准确性。发现,与SVM和最佳的机算方法相比,ANNE更可靠,数据特性较少。

0
下载
关闭预览

相关内容

专知会员服务
94+阅读 · 2021年8月28日
专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
4+阅读 · 2021年10月19日
Adversarial Metric Attack for Person Re-identification
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员