The parameter estimation of epidemic data-driven models is a crucial task. In some cases, we can formulate a better model by describing uncertainty with appropriate noise terms. However, because of the limited extent and partial information, (in general) this kind of model leads to intractable likelihoods. Here, we illustrate how a stochastic extension of the SEIR model improves the uncertainty quantification of an overestimated MCMC scheme based on its deterministic model to count reported-confirmed COVID-19 cases in Mexico City. Using a particular mechanism to manage missing data, we developed MLE for some parameters of the stochastic model, which improves the description of variance of the actual data.


翻译:对流行病数据驱动模型的参数估计是一项关键任务。 在某些情况下,我们可以用适当的噪音术语描述不确定性,从而制定一个更好的模型,然而,由于范围有限且信息不完整,(一般而言)这种模型会导致难以捉摸的可能性。 这里,我们举例说明SEIR模型的随机扩展如何改善过高估计的MCMC模型的不确定性量化,该模型基于其确定性模型,计算墨西哥城已报告确认的COVID-19案例。我们利用一种特殊机制管理缺失数据,为随机模型的某些参数制定了MLE, 从而改进了对实际数据差异的描述。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
25+阅读 · 2021年4月2日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月29日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员