The parameter estimation of epidemic data-driven models is a crucial task. In some cases, we can formulate a better model by describing uncertainty with appropriate noise terms. However, because of the limited extent and partial information, (in general) this kind of model leads to intractable likelihoods. Here, we illustrate how a stochastic extension of the SEIR model improves the uncertainty quantification of an overestimated MCMC scheme based on its deterministic model to count reported-confirmed COVID-19 cases in Mexico City. Using a particular mechanism to manage missing data, we developed MLE for some parameters of the stochastic model, which improves the description of variance of the actual data.
翻译:对流行病数据驱动模型的参数估计是一项关键任务。 在某些情况下,我们可以用适当的噪音术语描述不确定性,从而制定一个更好的模型,然而,由于范围有限且信息不完整,(一般而言)这种模型会导致难以捉摸的可能性。 这里,我们举例说明SEIR模型的随机扩展如何改善过高估计的MCMC模型的不确定性量化,该模型基于其确定性模型,计算墨西哥城已报告确认的COVID-19案例。我们利用一种特殊机制管理缺失数据,为随机模型的某些参数制定了MLE, 从而改进了对实际数据差异的描述。