Deep learning and other machine learning approaches are deployed to many systems related to Internet of Things or IoT. However, it faces challenges that adversaries can take loopholes to hack these systems through tampering history data. This paper first presents overall points of adversarial machine learning. Then, we illustrate traditional methods, such as Petri Net cannot solve this new question efficiently. To help IoT data analysis more efficient, we propose a retrieval method based on deep learning (recurrent neural network). Besides, this paper presents a research on data retrieval solution to avoid hacking by adversaries in the fields of adversary machine leaning. It further directs the new approaches in terms of how to implementing this framework in IoT settings based on adversarial deep learning.


翻译:深度学习和其他机器学习方法被运用到许多与物联网或IoT有关的系统。 但是,它面临着一些挑战,对手可以通过篡改历史数据而利用漏洞侵入这些系统。本文件首先介绍了对抗性机器学习的总体要点。然后,我们介绍了传统方法,例如Petri Net无法有效解决这一新问题。为了帮助IoT数据分析更加有效,我们提议了一种基于深层次学习的检索方法(经常性神经网络)。此外,本文件还介绍了一项数据检索方法研究,以避免对手在对立机器倾斜领域黑入这些系统。它进一步指导了如何在对抗性深层次学习的基础上在IoT环境中实施这一框架的新方法。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
101+阅读 · 2020年1月13日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
5+阅读 · 2021年4月21日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
18+阅读 · 2019年1月16日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
53+阅读 · 2018年12月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
101+阅读 · 2020年1月13日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
5+阅读 · 2021年4月21日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
18+阅读 · 2019年1月16日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
53+阅读 · 2018年12月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
16+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员