We present EKILA; a decentralized framework that enables creatives to receive recognition and reward for their contributions to generative AI (GenAI). EKILA proposes a robust visual attribution technique and combines this with an emerging content provenance standard (C2PA) to address the problem of synthetic image provenance -- determining the generative model and training data responsible for an AI-generated image. Furthermore, EKILA extends the non-fungible token (NFT) ecosystem to introduce a tokenized representation for rights, enabling a triangular relationship between the asset's Ownership, Rights, and Attribution (ORA). Leveraging the ORA relationship enables creators to express agency over training consent and, through our attribution model, to receive apportioned credit, including royalty payments for the use of their assets in GenAI.
翻译:我们提出了 EKILA;这是一个分散化的框架,使创作者能够获得对于他们对生成 AI(GenAI)的贡献的认可和奖励。EKILA提出了一种强大的视觉归属技术,结合了最新的内容来源标准(C2PA),解决了合成图像来源的问题--确定生成模型和培训数据对于 AI 生成的图像负责。此外,EKILA扩展了不可替代代币(NFT)生态系统,引入了一种权利的代币化表示,使资产的所有权,权利和归属之间形成三角关系(ORA)。利用ORA关系,创作者可以表达训练同意的代理,并通过我们的归属模型获得归属信用,包括使用他们的资产在 GenAI 中的版税付款。