Dynamic matching markets are an ubiquitous object of study with applications in health, labor, or dating. There exists a rich literature on the formal modeling of such markets. Typically, these models consist of an arrival procedure, governing when and which agents enter the market, and a sojourn period of agents during which they may leave the market matched with another present agent, or after which they leave the market unmatched. One important focus lies on the design of mechanisms for the matching process aiming at maximizing the quality of the produced matchings or at minimizing waiting costs. We study a dynamic matching procedure where homogeneous agents arrive at random according to a Poisson process and form edges at random yielding a sparse market. Agents leave according to a certain departure distribution and may leave early by forming a pair with a compatible agent. The objective is to maximize the number of matched agents. Our main result is to show that a mild guarantee on the maximum sojourn time of agents suffices to get almost optimal performance of instantaneous matching, despite operating in a thin market. This has the additional advantages of avoiding the risk of market congestion and guaranteeing short waiting times. We develop new techniques for proving our results going beyond commonly adopted methods for Markov processes.
翻译:动态匹配市场是健康、劳动或约会方面的应用研究的无处不在的动态匹配市场。关于此类市场的正式模型模型,有丰富的文献资料。典型地,这些模型包括一种到货程序,管理何时和哪个代理进入市场,以及他们离开市场的代理人的逗留期,在此期间他们可以与另一个现有代理公司相匹配,或在此之后,他们离开市场时可以与另一个现有代理公司相匹配,或者不与市场相匹配。一个重要重点是设计匹配程序的机制,目的是最大限度地提高所生产的匹配的质量,或者尽量减少等待成本。我们研究一种动态匹配程序,即同质剂按照普瓦森进程随机抵达,并在随机生成一个稀薄的市场时段形成边缘。代理公司根据某种离岸分配办法休假,可以与一个兼容的代理公司组成一对夫妇提前离开市场。目标是最大限度地增加匹配的代理公司的数量。我们的主要结果是表明,尽管在一个薄的市场中运作,但代理人的最大逗留时间的微小的保证足以几乎实现即时的即时匹配。我们有更多的好处是避免市场拥挤风险和保证短期的等待时间。我们开发新的技术,用以证明我们通常的结果。我们所采用的方法。