Few decoding algorithms for hyperbolic codes are known in the literature, this article tries to fill this gap. The first part of this work compares hyperbolic codes and Reed-Muller codes. In particular, we determine when a Reed-Muller code is a hyperbolic code. As a byproduct, we state when a hyperbolic code has greater dimension than a Reed-Muller code when they both have the same minimum distance. We use the previous ideas to describe how to decode a hyperbolic code using the largest Reed-Muller code contained in it, or alternatively using the smallest Reed-Muller code that contains it. A combination of these two algorithms is proposed for the case when hyperbolic codes are defined by polynomials in two variables. Then, we compare hyperbolic codes and Cube codes (tensor product of Reed-Solomon codes) and we propose decoding algorithms of hyperbolic codes based on their closest Cube codes. Finally, we adapt to hyperbolic codes the Geil and Matsumoto's generalization of Sudan's list decoding algorithm.
翻译:文献中知道的超双曲代码解码算法很少, 本条试图填补这一空白。 这项工作的第一部分比较超双曲代码和 Reed- Muller 代码。 特别是, 我们确定Reed- Muller 代码何时是超双曲代码。 作为副产品, 当双曲代码的尺寸大于 Reed- Muller 代码时, 当它们都具有相同的最小距离时, 我们说明它们何时具有比 Reed- Solomon 代码更大的维度。 我们使用先前的想法来描述如何使用其中最大的 Reed- Muller 代码解码超双曲代码, 或者使用包含它的最小的 Reed- Muller 代码。 当超双曲代码在两个变量中被多数值定义时, 我们提议将这两种算法结合。 然后, 我们比较超双曲代码和 Cube 代码( Reed- Solomon 代码的电荷产品), 我们提议根据它们最接近的 Cube 代码解码来解超双曲的算法。 最后, 我们调整了 Geil 和 松本 的苏丹列表解算法。