Transformer based knowledge tracing model is an extensively studied problem in the field of computer-aided education. By integrating temporal features into the encoder-decoder structure, transformers can processes the exercise information and student response information in a natural way. However, current state-of-the-art transformer-based variants still share two limitations. First, extremely long temporal features cannot well handled as the complexity of self-attention mechanism is O(n2). Second, existing approaches track the knowledge drifts under fixed a window size, without considering different temporal-ranges. To conquer these problems, we propose MUSE, which is equipped with multi-scale temporal sensor unit, that takes either local or global temporal features into consideration. The proposed model is capable to capture the dynamic changes in users knowledge states at different temporal-ranges, and provides an efficient and powerful way to combine local and global features to make predictions. Our method won the 5-th place over 3,395 teams in the Riiid AIEd Challenge 2020.
翻译:以变换器为基础的知识追踪模型是计算机辅助教育领域广泛研究的一个问题。 通过将时间特征纳入编码器-解码器结构,变压器可以自然地处理练习信息和学生反应信息。然而,目前以变压器为基础的最新变异器仍然有两个共同的局限性。第一,极长的时间特征无法很好地处理,因为自留机制的复杂性是O(n2)。 其次,现有方法跟踪知识在固定窗口尺寸下的漂移,而不考虑不同的时间范围。为了克服这些问题,我们提议MUSE, 配备多尺度的时空感应器, 既考虑本地的,也考虑全球的时空特征。 拟议的模型能够捕捉不同时程用户知识状态的动态变化,提供高效而有力的方法,将本地和全球特征结合起来进行预测。我们的方法在Riiid AIed 挑战2020中赢得了5个超过3,395个团队。