Data-driven approaches coupled with physical knowledge are powerful techniques to model systems. The goal of such models is to efficiently solve for the underlying field by combining measurements with known physical laws. As many systems contain unknown elements, such as missing parameters, noisy data, or incomplete physical laws, this is widely approached as an uncertainty quantification problem. The common techniques to handle all the variables typically depend on the numerical scheme used to approximate the posterior, and it is desirable to have a method which is independent of any such discretization. Information field theory (IFT) provides the tools necessary to perform statistics over fields that are not necessarily Gaussian. We extend IFT to physics-informed IFT (PIFT) by encoding the functional priors with information about the physical laws which describe the field. The posteriors derived from this PIFT remain independent of any numerical scheme and can capture multiple modes, allowing for the solution of problems which are ill-posed. We demonstrate our approach through an analytical example involving the Klein-Gordon equation. We then develop a variant of stochastic gradient Langevin dynamics to draw samples from the joint posterior over the field and model parameters. We apply our method to numerical examples with various degrees of model-form error and to inverse problems involving nonlinear differential equations. As an addendum, the method is equipped with a metric which allows the posterior to automatically quantify model-form uncertainty. Because of this, our numerical experiments show that the method remains robust to even an incorrect representation of the physics given sufficient data. We numerically demonstrate that the method correctly identifies when the physics cannot be trusted, in which case it automatically treats learning the field as a regression problem.


翻译:数据驱动的方法与物理知识结合是建模系统的有力手段。这种建模的目的是通过将测量结果与已知的物理定律相结合高效地求解潜在的场。由于许多系统包含未知元素,如缺失参数、噪声数据或不完整的物理规律,因此通常将其视为不确定性量化问题。处理所有变量的常规技术通常依赖于用于逼近后验概率的数值方案,而希望具有与任何此类离散化无关的方法。信息场理论(IFT)提供了进行统计的工具,可以处理非高斯场。我们通过将描述场的物理定律的功能先验编码到信息场理论中来扩展了IFT至物理知识信息场理论(PIFT)。由此得到的后验概率分布仍然独立于任何数值方案,并且可以捕获多个模式,从而可以解决病态问题。我们通过一个涉及Klein-Gordon方程的分析实例来演示我们的方法。然后,我们开发了一种变种随机梯度 Langevin 动力学,以从场和模型参数的联合后验中提取样本。我们将该方法应用于涉及非线性微分方程的数值实例中,这些实例具有不同程度的模型误差和反问题。作为附注,该方法配备了一种度量,在后验概率中自动量化模型误差。因此,我们的数值实验表明,即使给定足够的数据,该方法仍然具有对模型中物理描述的正确性进行自动评估的鲁棒性。我们在数值实验中演示了当系统中的物理定律无法信任时,该方法可以自动将学习场视为回归问题。

0
下载
关闭预览

相关内容

【港科大博士论文】生成模型的统计和结构特性,338页pdf
专知会员服务
45+阅读 · 2022年12月20日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
43+阅读 · 2019年12月20日
VIP会员
相关VIP内容
【港科大博士论文】生成模型的统计和结构特性,338页pdf
专知会员服务
45+阅读 · 2022年12月20日
相关资讯
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员