The charge prediction task aims to predict the charge for a case given its fact description. Recent models have already achieved impressive accuracy in this task, however, little is understood about the mechanisms they use to perform the judgment.For practical applications, a charge prediction model should conform to the certain legal theory in civil law countries, as under the framework of civil law, all cases are judged according to certain local legal theories. In China, for example, nearly all criminal judges make decisions based on the Four Elements Theory (FET).In this paper, we argue that trustworthy charge prediction models should take legal theories into consideration, and standing on prior studies in model interpretation, we propose three principles for trustworthy models should follow in this task, which are sensitive, selective, and presumption of innocence.We further design a new framework to evaluate whether existing charge prediction models learn legal theories. Our findings indicate that, while existing charge prediction models meet the selective principle on a benchmark dataset, most of them are still not sensitive enough and do not satisfy the presumption of innocence. Our code and dataset are released at https://github.com/ZhenweiAn/EXP_LJP.
翻译:指控预测任务旨在根据事实描述预测对某一案件的指控。但最近的一些模型在这项任务中已经取得了令人印象深刻的准确性,但很少了解它们用于执行判决的机制。 关于实际应用,指控预测模型应当符合大陆法系国家的某些法律理论,正如在民法框架下一样,所有案件都是根据某些当地法律理论来判断的。例如,在中国,几乎所有刑事法官都根据四要素理论(FET)作出决定。 在本文件中,我们争辩说,可靠的指控预测模型应当考虑到法律理论,并坚持以前对模型解释的研究,我们提议了值得信赖的模式在这项工作中应遵循的三项原则,这些原则是敏感的、选择性的和无罪推定的。我们进一步设计了一个新的框架,以评估现有的指控预测模型是否学习法律理论。我们的调查结果表明,尽管现有的指控预测模型符合基准数据集的选择性原则,但大多数仍然不够敏感,不能满足无罪推定。我们的代码和数据集在https://github.com/ZhenweiAn/EXP_LJP。