Kernel selection plays a central role in determining the performance of Gaussian Process (GP) models, as the chosen kernel determines both the inductive biases and prior support of functions under the GP prior. This work addresses the challenge of constructing custom kernel functions for high-dimensional GP regression models. Drawing inspiration from recent progress in deep learning, we introduce a novel approach named KITT: Kernel Identification Through Transformers. KITT exploits a transformer-based architecture to generate kernel recommendations in under 0.1 seconds, which is several orders of magnitude faster than conventional kernel search algorithms. We train our model using synthetic data generated from priors over a vocabulary of known kernels. By exploiting the nature of the self-attention mechanism, KITT is able to process datasets with inputs of arbitrary dimension. We demonstrate that kernels chosen by KITT yield strong performance over a diverse collection of regression benchmarks.
翻译:内核选择在确定高山进程模型的性能方面发挥着核心作用,因为所选的内核决定了感性偏向和以前对GP下各项功能的先前支持。 这项工作旨在应对为高维GP回归模型构建自定义内核功能的挑战。 我们从最近深层次学习的进展中汲取灵感,引入了一种新颖的方法,名为KITT:通过变压器识别内核。 KITT利用基于变压器的架构在0.1秒以内生成内核建议,比常规内核搜索算法快几级。 我们用以前产生的合成数据在已知内核的词汇上对模型进行培训。 通过利用自控机制的性质, KITT 能够处理带有任意层面投入的数据集。 我们证明由KITT选择的内核在多种回归基准的收集中产生很强的性能。