Maximum likelihood estimation is a common method of estimating the parameters of the probability distribution from a given sample. This paper aims to introduce the maximum likelihood estimation in the framework of sublinear expectation. We find the maximum likelihood estimator for the parameters of the maximal distribution via the solution of the associated minimax problem, which coincides with the optimal unbiased estimation given by Jin and Peng \cite{JP21}. A general estimation method for samples with dependent structure is also provided. This result provides a theoretical foundation for the estimator of upper and lower variances, which is widely used in the G-VaR prediction model in finance.
翻译:最大可能性估计是估计某一样本概率分布参数的常用方法。 本文的目的是在亚线性预期框架内引入最大可能性估计。 我们发现通过解决相关的微轴问题(这与Jin和Peng \cite{JP21}给出的最佳无偏向估计相吻合), 最大可能性估计值与Jin和Peng \cite{JP21}给出的最佳无偏向估计值相吻合。 还提供了具有依附结构的样本的一般估计法。 其结果为G- VaR预测模型在融资中广泛使用的上下差异估计值提供了理论基础。