The processing of Visually-Rich Documents (VRDs) is highly important in information extraction tasks associated with Document Intelligence. We introduce DI-Metrics, a Python library devoted to VRD model evaluation comprising text-based, geometric-based and hierarchical metrics for information extraction tasks. We apply DI-Metrics to evaluate information extraction performance using publicly available CORD dataset, comparing performance of three SOTA models and one industry model. The open-source library is available on GitHub.
翻译:在与文件情报相关的信息提取任务中,处理视觉-Rich文件非常重要,我们引入了DI-Metrics,这是一家专用于VRD模式评估的Python图书馆,由用于信息提取任务的基于文本、基于几何和等级的计量标准组成,我们采用Di-Metrics,使用公开提供的CORD数据集评估信息提取性能,比较三个SOTA模型和一个行业模型的绩效。