Knowledge graphs (KGs) that modelings the world knowledge as structural triples are inevitably incomplete. Such problems still exist for multimodal knowledge graphs (MMKGs). Thus, knowledge graph completion (KGC) is of great importance to predict the missing triples in the existing KGs. As for the existing KGC methods, embedding-based methods rely on manual design to leverage multimodal information while finetune-based approaches are not superior to embedding-based methods in link prediction. To address these problems, we propose a VisualBERT-enhanced Knowledge Graph Completion model (VBKGC for short). VBKGC could capture deeply fused multimodal information for entities and integrate them into the KGC model. Besides, we achieve the co-design of the KGC model and negative sampling by designing a new negative sampling strategy called twins negative sampling. Twins negative sampling is suitable for multimodal scenarios and could align different embeddings for entities. We conduct extensive experiments to show the outstanding performance of VBKGC on the link prediction task and make further exploration of VBKGC.
翻译:将世界知识建模为结构三重的知识图(KGs)必然是不完整的。对于多式联运知识图(MMKGs)来说,这些问题仍然存在。因此,知识图的完成(KGC)对于预测现有KGs中缺失的三重数据非常重要。关于现有的KGC方法,基于嵌入的方法依靠人工设计来利用多式联运信息,而基于微调的方法并不优于嵌入基于链接的预测方法。为了解决这些问题,我们提议了视觉BERT增强型知识图完成模型(VBKGC短称)。VBKGC可以为各实体获取深度融合的多式联运信息,并将其纳入KGC模型。此外,我们通过设计新的负面取样战略,即双胞胎负抽样,实现KGC模型的共同设计,并进行负抽样。双胞胎负面取样适合多式联运情景,并且可以对各实体的不同嵌入进行统一。我们进行了广泛的实验,以展示VBKGC在链接预测任务上的杰出表现,并进一步探索VBKGC。