Neural network architectures in natural language processing often use attention mechanisms to produce probability distributions over input token representations. Attention has empirically been demonstrated to improve performance in various tasks, while its weights have been extensively used as explanations for model predictions. Recent studies (Jain and Wallace, 2019; Serrano and Smith, 2019; Wiegreffe and Pinter, 2019) have showed that it cannot generally be considered as a faithful explanation (Jacovi and Goldberg, 2020) across encoders and tasks. In this paper, we seek to improve the faithfulness of attention-based explanations for text classification. We achieve this by proposing a new family of Task-Scaling (TaSc) mechanisms that learn task-specific non-contextualised information to scale the original attention weights. Evaluation tests for explanation faithfulness, show that the three proposed variants of TaSc improve attention-based explanations across two attention mechanisms, five encoders and five text classification datasets without sacrificing predictive performance. Finally, we demonstrate that TaSc consistently provides more faithful attention-based explanations compared to three widely-used interpretability techniques.


翻译:自然语言处理中的神经网络结构往往使用注意机制来产生对投入象征性表述的概率分布。注意已经从经验上表明,可以改进各种任务的业绩,而其权重已被广泛用作模型预测的解释。最近的研究(Jain和Wallace,2019年;Serrano和Smith,2019年;Wiegreffe和Pinter,2019年)表明,通常不能把它视为对各种编码和任务的一种忠实的解释(Jacovi和Goldberg,2020年)。在本文件中,我们力求提高基于注意的解释对文本分类的忠实性。我们提出一套新的任务缩略微(Tasc)机制,以学习与任务相关的非书面信息,以扩大最初的注意权重。关于解释的评审测试显示,Tasc的三个拟议变式在不牺牲预测性性能的情况下,在五个编码和五个文本分类数据集中提高了关注性解释性。最后,我们证明TaSc一贯地提供更忠实的基于注意的解释,而与三种广泛使用的可解释性技术相比。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
4+阅读 · 2019年8月7日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员