Graph neural networks (GNN) based collaborative filtering (CF) have attracted increasing attention in e-commerce and social media platforms. However, there still lack efforts to evaluate the robustness of such CF systems in deployment. Fundamentally different from existing attacks, this work revisits the item promotion task and reformulates it from a targeted topological attack perspective for the first time. Specifically, we first develop a targeted attack formulation to maximally increase a target item's popularity. We then leverage gradient-based optimizations to find a solution. However, we observe the gradient estimates often appear noisy due to the discrete nature of a graph, which leads to a degradation of attack ability. To resolve noisy gradient effects, we then propose a masked attack objective that can remarkably enhance the topological attack ability. Furthermore, we design a computationally efficient approach to the proposed attack, thus making it feasible to evaluate large-large CF systems. Experiments on two real-world datasets show the effectiveness of our attack in analyzing the robustness of GNN-based CF more practically.


翻译:在电子商务和社交媒体平台上,基于合作的神经网络(GNN)在合作过滤平台上吸引了越来越多的关注,然而,仍然缺乏评价这种CF系统在部署中的稳健性的努力,这项工作与现有的攻击基本不同,基本上不同于现有的攻击,重新审视项目促销任务,并首次从有目标的地貌攻击角度重新对其进行改造。具体地说,我们首先制定有针对性的攻击配方,以最大限度地增加目标项目的受欢迎程度。然后我们利用基于梯度的优化来寻找解决办法。然而,我们观察到,由于一个图的离散性质,梯度估计往往显得很吵,导致攻击能力的退化。为了解决扰动的梯度效应,我们随后提出了一个掩盖攻击目标,可以显著提高表面攻击能力。此外,我们设计了一种对拟议的攻击的计算高效方法,从而能够评估大型CFC系统。对两个真实世界数据集的实验表明我们攻击在更实际地分析以GNN为基础的CF的稳健性方面的有效性。

0
下载
关闭预览

相关内容

CF:ACM International Conference on Computing Frontiers。 Explanation:计算机前沿国际会议。 Publisher: ACM。 SIT: http://dblp.uni-trier.de/db/conf/cf
专知会员服务
25+阅读 · 2021年8月3日
专知会员服务
40+阅读 · 2020年9月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年10月3日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员