This paper presents a novel solution to automatically count vehicles in a parking lot using images captured by smart cameras. Unlike most of the literature on this task, which focuses on the analysis of single images, this paper proposes the use of multiple visual sources to monitor a wider parking area from different perspectives. The proposed multi-camera system is capable of automatically estimate the number of cars present in the entire parking lot directly on board the edge devices. It comprises an on-device deep learning-based detector that locates and counts the vehicles from the captured images and a decentralized geometric-based approach that can analyze the inter-camera shared areas and merge the data acquired by all the devices. We conduct the experimental evaluation on an extended version of the CNRPark-EXT dataset, a collection of images taken from the parking lot on the campus of the National Research Council (CNR) in Pisa, Italy. We show that our system is robust and takes advantage of the redundant information deriving from the different cameras, improving the overall performance without requiring any extra geometrical information of the monitored scene.
翻译:本文展示了使用智能相机拍摄的图像在停车场自动清点车辆的新解决办法。 与大部分侧重于分析单一图像的任务文献不同,本文件提议使用多目来源从不同角度监测更宽停车区。 拟议的多摄像系统能够自动估计边缘设备上直接在边缘设备上方的整个停车场内的汽车数量。 它包括一个定位和从所摄图像中计分车辆的深深深知识探测器和一个分散的几何基方法,可以分析隔热共享区域并合并所有装置获得的数据。 我们对CNRPark-EXT数据集的扩大版本进行实验性评价,这是从意大利皮萨国家研究委员会(CNR)校园停车场内采集的图像的收集。 我们显示,我们的系统是健全的,利用了不同相机产生的多余信息,提高了整个性能,而不需要任何额外的监测场的几何学信息。