This work proposes the M3E2, a multi-task learning neural network model to estimate the effect of multiple treatments. In contrast to existing methods, M3E2 is robust to multiple treatment effects applied simultaneously to the same unit, continuous and binary treatments, and many covariates. We compared M3E2 with three baselines in three synthetic benchmark datasets: two with multiple treatments and one with one treatment. Our analysis showed that our method has superior performance, making more assertive estimations of the true treatment effects. The code is available at github.com/raquelaoki/M3E2.
翻译:这项工作提出了M3E2, 这是一种多任务学习神经网络模型,用以估计多重治疗的效果。 与现有方法不同, M3E2对同时适用于同一单位、连续和二进式治疗以及许多共变体的多重治疗效果非常有力。 我们在三个合成基准数据集中将M3E2与三个基线进行了比较:两个有多重治疗,一个有一次治疗。 我们的分析表明,我们的方法表现优异,对真正的治疗效果作了更直截了当的估计。 代码可在 github. com/raquelaoki/M3E2上查到。