Active Shape Model (ASM) is a statistical model of object shapes that represents a target structure. ASM can guide machine learning algorithms to fit a set of points representing an object (e.g., face) onto an image. This paper presents a lightweight Convolutional Neural Network (CNN) architecture with a loss function being assisted by ASM for face alignment and estimating head pose in the wild. We use ASM to first guide the network towards learning the smoother distribution of the facial landmark points. Then, during the training process, inspired by the transfer learning, we gradually harden the regression problem and lead the network towards learning the original landmark points distribution. We define multi-tasks in our loss function that are responsible for detecting facial landmark points, as well as estimating face pose. Learning multiple correlated tasks simultaneously builds synergy and improves the performance of individual tasks. We compare the performance of our proposed CNN, ASMNet with MobileNetV2 (which is about 2 times bigger ASMNet) in both face alignment and pose estimation tasks. Experimental results on challenging datasets show that by using the proposed ASM assisted loss function, ASMNet performance is comparable with MobileNetV2 in face alignment task. Besides, for face pose estimation, ASMNet performs much better than MobileNetV2. Moreover, overall ASMNet achieves an acceptable performance for facial landmark points detection and pose estimation while having a significantly smaller number of parameters and floating-point operations comparing to many CNN-based proposed models.


翻译:主动形状模型(ASM) 是一个代表目标结构的物体形状的统计模型。 ASM 可以指导机器学习算法, 以将代表物体( 如脸) 的一组点数( 如脸) 与图像相匹配。 本文展示了一个轻量的进进进神经网络(CNN)架构, 其损失功能由ASM协助进行, 以进行脸对齐和估计野外头头部的形状。 我们使用ASM来首先指导网络, 以了解面部标志点分布更加平稳的分布。 然后, 在培训过程中, 在转移学习学习的学习过程中, 我们逐渐强化回归问题, 引导网络学习最初的里程碑点分布。 我们定义了我们损失函数中的多个任务, 负责检测面部标点( 如脸部)和面部( 如脸部)的缩略图, ASM Net 运行情况与个人任务的绩效。 我们比较了我们提议的CNNA、 ASMNet与移动网络的绩效, 在面部和浮动估算任务中大约2倍于2个的模型。 关于挑战性数据设置的实验结果显示, 通过使用拟议的ASM- ASM- ASM2 AS- AS- ASU IM 2 ASU 2 IM 2 进行总体任务, 进行更深级的SIM 2. 2. 进行一个可比较, 进行一个可接受性工作进行一个可接受性工作进行一个可接受性工作,, 工作进行一个可接受性工作,,, ASM 2 ASM 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Arxiv
20+阅读 · 2020年6月8日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
Arxiv
5+阅读 · 2018年4月13日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Top
微信扫码咨询专知VIP会员