We consider the combination of uplink code-domain non-orthogonal multiple access (NOMA) with massive multiple-input multiple-output (MIMO) and reconfigurable intelligent surfaces (RISs). We assume a setup in which the base station (BS) is capable of forming beams towards the RISs under line-of-sight conditions, and where each RIS is covering a cluster of users. In order to support multi-user transmissions within a cluster, code-domain NOMA via spreading is utilized. We investigate the optimization of the RIS weights such that a large number of users is supported. As it turns out, it is a coupled optimization problem that depends on the detection order under interference cancellation and the applied filtering at the BS. We propose to decouple those variables by using sum-rate optimized weights as the initial solution, allowing us to obtain a decoupled estimate of those variables. Then, in order to determine the final weights, the problem is relaxed into a semidefinite program that can be solved efficiently via convex optimization algorithms. Simulation results show the effectiveness of our approach in improving the detectability of the users.


翻译:我们考虑将上链接代码-非正向多功能多存取(NOMA)与大规模多投入多输出(MIMO)和可重新配置的智能表面(RIS)相结合。我们假设一个设置,使基地台(BS)能够在视觉线下对RIS形成光束,而每个RIS覆盖一组用户。为了支持一个集群内的多用户传输,我们利用了通过扩散的代码-域域域(NOMA)来进行。我们调查了RIS加权的优化,从而支持了大量用户。事实证明,这是一个同时存在的优化问题,取决于干扰取消中的探测顺序和BS的应用过滤。我们提议通过使用超速最佳重量作为初步解决方案来区分这些变量,从而使我们能够获得这些变量的分解估计值。然后,为了确定最终的重量,问题被淡化成一个半定型程序,可以通过convex优化算法有效解决。模拟结果显示我们用户的可探测性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年12月8日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员