We propose a non-parametric method to simultaneously estimate non-crossing, non-linear quantile curves. We expand the conditional distribution function of the response in $\mathcal{I}$-spline basis functions where the coefficients are further modeled as functions of the covariates using feed-forward neural networks. By leveraging the approximation power of splines and neural networks, our model can approximate any continuous quantile function. Compared to existing methods, our method estimates all rather than a finite subset of quantiles, scales well to high dimensions and accounts for estimation uncertainty. While the model is arbitrarily flexible, interpretable marginal quantile effects are estimated using accumulative local effect plots and variable importance measures. A simulation study shows that compared to existing methods, our model can better recover quantiles of the response distribution when the sample size is small, and illustrative applications to birth weight and tropical cyclone intensity are presented.


翻译:我们提出一种非参数方法,以同时估计非交叉、非线性量化曲线。我们扩大了以$\mathcal{I}$spline基基函数计算响应的有条件分布功能,在这种功能中,系数被进一步模拟为使用Feed-forward神经网络的共变体函数。通过利用浮标和神经网络的近似功率,我们的模型可以近似任何连续的量函数。与现有方法相比,我们的方法估计全部而非一定的量化子集,高度至高维的尺度,以及估计不确定性的核算。虽然模型是任意的,但可解释的边微量效应是使用累积的地方效应图和可变重要度测量法来估计的。模拟研究表明,与现有方法相比,我们的模型可以更好地回收样本大小小时的响应分布的量,并对出生重量和热带气旋强度进行说明性应用。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
已删除
将门创投
6+阅读 · 2019年6月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
0+阅读 · 2021年4月15日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员