During the past two decades, multi-agent optimization problems have drawn increased attention from the research community. When multiple objective functions are present among agents, many works optimize the sum of these objective functions. However, this formulation implies a decision regarding the relative importance of each objective function. In fact, optimizing the sum is a special case of a multi-objective problem in which all objectives are prioritized equally. In this paper, a distributed optimization algorithm that explores Pareto optimal solutions for non-homogeneously weighted sums of objective functions is proposed. This exploration is performed through a new rule based on agents' priorities that generates edge weights in agents' communication graph. These weights determine how agents update their decision variables with information received from other agents in the network. Agents initially disagree on the priorities of the objective functions though they are driven to agree upon them as they optimize. As a result, agents still reach a common solution. The network-level weight matrix is (non-doubly) stochastic, which contrasts with many works on the subject in which it is doubly-stochastic. New theoretical analyses are therefore developed to ensure convergence of the proposed algorithm. This paper provides a gradient-based optimization algorithm, proof of convergence to solutions, and convergence rates of the proposed algorithm. It is shown that agents' initial priorities influence the convergence rate of the proposed algorithm and that these initial choices affect its long-run behavior. Numerical results performed with different numbers of agents illustrate the performance and efficiency of the proposed algorithm.


翻译:在过去20年中,多试剂优化问题引起了研究界的更多关注。当存在多种目标功能时,许多机构会优化这些客观功能的总和。然而,这一提法意味着就每个目标功能的相对重要性做出一项决定。事实上,优化总和是一个多目标问题的特殊案例,所有目标都处于同等优先地位。在本文件中,提出了一种分布式优化算法,探索Pareto最佳解决方案,用于对客观功能非同质加权总和提出最佳解决方案。这一探索是通过基于代理商优先事项的新规则进行的,在代理商通信图中产生边际权重。这些权重决定了代理商如何用网络其他代理商提供的信息更新其决定变量。这些代理商最初对目标功能的优先事项有分歧,尽管他们被驱使在优化时同意这些目标。因此,代理商仍然达成共同的解决方案。网络级加权矩阵与许多关于该主题的工作是双重的。因此,新的理论分析是为了确保所拟进行的决定变量与网络内其他代理商的初始趋同率率的趋同性率。本文提供了一种拟议的递增压压率的缩率,其初步压压压压压压率的计算结果与拟议压压压压压的计算结果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
新加坡南洋理工最新37页《零样本学习综述》论文
专知会员服务
114+阅读 · 2019年10月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
已删除
将门创投
6+阅读 · 2017年11月27日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2020年11月19日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
已删除
将门创投
6+阅读 · 2017年11月27日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员