We consider a multi-robot system with a team of collaborative robots and multiple tasks that emerges over time. We propose a fully decentralized task and path planning (DTPP) framework consisting of a task allocation module and a localized path planning module. Each task is modeled as a Markov Decision Process (MDP) or a Mixed Observed Markov Decision Process (MOMDP) depending on whether full states or partial states are observable. The task allocation module then aims at maximizing the expected pure reward (reward minus cost) of the robotic team. We fuse the Markov model into a factor graph formulation so that the task allocation can be decentrally solved using the max-sum algorithm. Each robot agent follows the optimal policy synthesized for the Markov model and we propose a localized forward dynamic programming scheme that resolves conflicts between agents and avoids collisions. The proposed framework is demonstrated with high fidelity ROS simulations and experiments with multiple ground robots.
翻译:我们考虑的是一个由协作机器人组成的多机器人系统,以及随着时间推移产生的多种任务。我们提议了一个完全分散的任务和路径规划框架(DTPP)框架,包括任务分配模块和地方路径规划模块。每项任务都建模为Markov 决策程序(MDP)或混合观察Markov 决策程序(MOMDP),这取决于整个状态或部分状态是可观测的。任务分配模块随后的目标是最大限度地实现机器人团队预期的纯报酬(回报减成本)。我们把Markov 模型整合成一个要素图表配方,以便任务分配可以使用最大和总算算法进行分散解决。每个机器人代理都遵循为Markov 模式所合成的最佳政策,我们建议了一个本地化的前瞻性动态程序,解决代理器之间的冲突并避免碰撞。提议的框架以高忠诚的ROS模拟和多个地面机器人的实验来演示。