Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome that involves the central and peripheral nervous systems. Accurate detection and segmentation of neurofibromas are essential for assessing tumor burden and longitudinal tumor size changes. Automatic convolutional neural networks (CNNs) are sensitive and vulnerable as tumors' variable anatomical location and heterogeneous appearance on MRI. In this study, we propose deep interactive networks (DINs) to address the above limitations. User interactions guide the model to recognize complicated tumors and quickly adapt to heterogeneous tumors. We introduce a simple but effective Exponential Distance Transform (ExpDT) that converts user interactions into guide maps regarded as the spatial and appearance prior. Comparing with popular Euclidean and geodesic distances, ExpDT is more robust to various image sizes, which reserves the distribution of interactive inputs. Furthermore, to enhance the tumor-related features, we design a deep interactive module to propagate the guides into deeper layers. We train and evaluate DINs on three MRI data sets from NF1 patients. The experiment results yield significant improvements of 44% and 14% in DSC comparing with automated and other interactive methods, respectively. We also experimentally demonstrate the efficiency of DINs in reducing user burden when comparing with conventional interactive methods. The source code of our method is available at \url{https://github.com/Jarvis73/DINs}.
翻译:Neurofibromatis type 1 (NF1) 是一种涉及中、外围神经系统的自上而下肿瘤先变综合症(NF1) 。神经纤维质的精确检测和分解对于评估肿瘤负担和纵向肿瘤大小变化至关重要。自动进化神经网络(CNN)作为肿瘤的可变解剖位置和MRI上的各种外观而具有敏感性和脆弱性。在本研究中,我们建议深度互动网络(DINs)解决上述限制。用户互动指导模型识别复杂的肿瘤并迅速适应异质肿瘤。我们引入简单而有效的指数远程变异(ExDTT),将用户互动转换为被视为空间和外观的指南地图。与流行的 Euclidean 和地貌距离相比,Exdial 神经神经网络网络(CNNNNNN) 比较是敏感和脆弱的。我们为强化与肿瘤有关的特性,我们设计了一个深度互动模块将指南传播到更深层。我们从NF1 病人的三套MRI远程数据中培训和评估D(ED) 的D1 的D 结果,将用户的用户的交互分析结果分别与44%和44%的实验性方法进行比较化结果。我们用来对比了44%和14 和14的交互方法。我们用来比较。我们用来分析了其他的交互方法。