Vignetting is an inherited imaging phenomenon within almost all optical systems, showing as a radial intensity darkening toward the corners of an image. Since it is a common effect for photography and usually appears as a slight intensity variation, people usually regard it as a part of a photo and would not even want to post-process it. Due to this natural advantage, in this work, we study vignetting from a new viewpoint, i.e., adversarial vignetting attack (AVA), which aims to embed intentionally misleading information into vignetting and produce a natural adversarial example without noise patterns. This example can fool the state-of-the-art deep convolutional neural networks (CNNs) but is imperceptible to humans. To this end, we first propose the radial-isotropic adversarial vignetting attack (RI-AVA) based on the physical model of vignetting, where the physical parameters (e.g., illumination factor and focal length) are tuned through the guidance of target CNN models. To achieve higher transferability across different CNNs, we further propose radial-anisotropic adversarial vignetting attack (RA-AVA) by allowing the effective regions of vignetting to be radial-anisotropic and shape-free. Moreover, we propose the geometry-aware level-set optimization method to solve the adversarial vignetting regions and physical parameters jointly. We validate the proposed methods on three popular datasets, i.e., DEV, CIFAR10, and Tiny ImageNet, by attacking four CNNs, e.g., ResNet50, EfficientNet-B0, DenseNet121, and MobileNet-V2, demonstrating the advantages of our methods over baseline methods on both transferability and image quality.


翻译:在几乎所有的光学系统中,Vignetting是一种传承成像现象,其结果是将故意误导性信息嵌入网络内,并形成一个没有噪音模式的自然对抗性范例。由于这是摄影的一个常见效果,通常看起来是轻微的强度变异,人们通常将它视为照片的一部分,甚至不想处理它。由于这一自然优势,我们在这项工作中从一个新的角度,即对抗性激素攻击(AVA)来研究Vignett(VIVA),其目的是将故意误导性信息嵌入网络内,并生成一个自然的对抗性范例。这个例子可以愚弄最先进的物理变异性神经神经网络网络(CNNs),但对于人类来说是难以察觉的。为了在不同CNICCs,我们首先提议了辐射性对抗性对抗性攻击性攻击(RI-AVA)攻击(RI-AVA)的物理模型, 物理参数(例如,不透明性因素和焦点长度)通过目标CNN模型的指南来调整我们的物理参数(例如,Bnationalational-ality-alalalalityality netal netal net net net net net net net net net net net net net net net net net net net net net net net net net net net net net net net net net net net netwoder) seal latistrational latistrations) lauts lading lady lading lading lading lading lady lading lady lady lady lady lady lading laut lauts laut lauts lauts laut laut laut laut laut lauts lauts ladings lauts ladings lauts lauts lauts lauts ladings lauts lauts lauts,我们进一步提议,我们提议了我们进一步提议了我们提议了我们用的方法,我们提议在三个方法,我们通过三维-re 和 和数字性变变更更更上

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Metric Attack for Person Re-identification
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
2018 年最棒的三篇 GAN 论文
AI科技评论
4+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员