The successful deployment of deep learning-based techniques for autonomous systems is highly dependent on the data availability for the respective system in its deployment environment. Especially for unstructured outdoor environments, very few datasets exist for even fewer robotic platforms and scenarios. In an earlier work, we presented the German Outdoor and Offroad Dataset (GOOSE) framework along with 10000 multimodal frames from an offroad vehicle to enhance the perception capabilities in unstructured environments. In this work, we address the generalizability of the GOOSE framework. To accomplish this, we open-source the GOOSE-Ex dataset, which contains additional 5000 labeled multimodal frames from various completely different environments, recorded on a robotic excavator and a quadruped platform. We perform a comprehensive analysis of the semantic segmentation performance on different platforms and sensor modalities in unseen environments. In addition, we demonstrate how the combined datasets can be utilized for different downstream applications or competitions such as offroad navigation, object manipulation or scene completion. The dataset, its platform documentation and pre-trained state-of-the-art models for offroad perception will be made available on https://goose-dataset.de/. \
翻译:暂无翻译