Motivated by models of human decision making proposed to explain commonly observed deviations from conventional expected value preferences, we formulate two stochastic multi-armed bandit problems with distorted probabilities on the reward distributions: the classic $K$-armed bandit and the linearly parameterized bandit settings. We consider the aforementioned problems in the regret minimization as well as best arm identification framework for multi-armed bandits. For the regret minimization setting in $K$-armed as well as linear bandit problems, we propose algorithms that are inspired by Upper Confidence Bound (UCB) algorithms, incorporate reward distortions, and exhibit sublinear regret. For the $K$-armed bandit setting, we derive an upper bound on the expected regret for our proposed algorithm, and then we prove a matching lower bound to establish the order-optimality of our algorithm. For the linearly parameterized setting, our algorithm achieves a regret upper bound that is of the same order as that of regular linear bandit algorithm called Optimism in the Face of Uncertainty Linear (OFUL) bandit algorithm, and unlike OFUL, our algorithm handles distortions and an arm-dependent noise model. For the best arm identification problem in the $K$-armed bandit setting, we propose algorithms, derive guarantees on their performance, and also show that these algorithms are order optimal by proving matching fundamental limits on performance. For best arm identification in linear bandits, we propose an algorithm and establish sample complexity guarantees. Finally, we present simulation experiments which demonstrate the advantages resulting from using distortion-aware learning algorithms in a vehicular traffic routing application.
翻译:暂无翻译