The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of square matrices An arising form the discretization of differential problems. Indeed, as the mesh fineness parameter $n$ increases to $\infty$, the sequence $\{A_n\}_n$ often turns out to be a GLT sequence. In this paper, motivated by recent applications, we further enhance the GLT apparatus by developing a full theory of rectangular GLT sequences as an extension of the theory of classical square GLT sequences. We also detail an example of application as an illustration of the potential impact of the theory presented herein.
翻译:本地通用的Teplitz(GLT)序列理论是计算平方基体无光谱分布的强大机制。 差异问题的分化正在产生。 事实上,由于网形精细参数(n$)增加至$1美元,因此,$ZA_n ⁇ n$的序列往往被证明是GLT序列。 在本文中,由于最近的应用,我们进一步发展了长方GLT序列的完整理论,作为古典正方形GLT序列理论的延伸,从而进一步加强了GLT结构。 我们还详细列举了应用实例,以说明此处所介绍的理论的潜在影响。