Objective: This study aims to develop an end-to-end natural language processing pipeline for triage and diagnosis of COVID-19 from patient-authored social media posts, in order to provide researchers and other interested parties with additional information on the symptoms, severity and prevalence of the disease. Materials and Methods: The text processing pipeline first extracts COVID-19 symptoms and related concepts such as severity, duration, negations, and body parts from patients posts using conditional random fields. An unsupervised rule-based algorithm is then applied to establish relations between concepts in the next step of the pipeline. The extracted concepts and relations are subsequently used to construct two different vector representations of each post. These vectors are applied separately to build support vector machine learning models to triage patients into three categories and diagnose them for COVID-19. Results: We report that macro- and micro-averaged F1 scores in the range of 71-96% and 61-87%, respectively, for the triage and diagnosis of COVID-19, when the models are trained on human labelled data. Our experimental results indicate that similar performance can be achieved when the models are trained using predicted labels from concept extraction and rule-based classifiers, thus yielding end-to-end machine learning. Also, we highlight important features uncovered by our diagnostic machine learning models and compare them with the most frequent symptoms revealed in another COVID-19 dataset. In particular, we found that the most important features are not always the most frequent ones.


翻译:本研究的目标是:开发一端到端的自然语言处理管道,从病人使用的社交媒体站点对COVID-19进行分级和诊断,以便向研究人员和其他有关各方提供关于该疾病的症状、严重程度和流行程度的更多信息。材料和方法:文本处理管道首先提取COVID-19症状和相关概念,例如严重性、持续性、否定性、以及使用有条件随机字段的病人站点的器官部分等。然后采用不受监督的基于规则的算法,在输油管线的下一步骤中建立概念之间的关系。提取的概念和关系随后被用来建立两个不同的矢量表示。这些矢量分别用于建立支持病媒机学习模型,将病人分为三类,并为COVI-19诊断。结果:我们报告说,在对COVI-19进行三角和诊断时,分别使用71-96%和61-87%的宏观和微观平均F1评分,这些模型总是以人类标签数据为基础。我们的实验结果表明,在对模型进行最经常的标签进行对比时,可以实现类似的业绩,我们用最经常的标签进行对比,从而通过机器的诊断性分析模型来学习。

0
下载
关闭预览

相关内容

MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
【UAI 2019 Tutorials】深度学习数学(Mathematics of Deep Learning)
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
A Survey on Automated Fact-Checking
Arxiv
8+阅读 · 2021年8月26日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员