Vehicle platooning, one of the advanced services supported by 5G NR-V2X, improves traffic efficiency in the connected intelligent transportation systems (C-ITSs). However, the packet delivery ratio of platoon communication, especially in the out-of-coverage area, is significantly impacted by the random selection algorithms employed in the current resource allocation scheme. In this paper, we first analyze the collision probability via the random selection algorithm adopted in the current standard. Subsequently, we then investigate the deep reinforcement learning (DRL) algorithm that decreases the collision probability by letting the agent (vehicle) learn from the communication environment. Monte Carlo simulation is employed to verify the results obtained in the analytical model and to compare the results between the two discussed algorithms. Numerical results show that the proposed DRL algorithm outperforms the random selection algorithm in terms of different vehicle density, which at least lowering the collision probability by 73% and 45% in low and high vehicle density respectively.


翻译:由5G NR-V2X 支持的先进服务之一车辆排,提高了连通智能运输系统(C-ITS)的交通效率;然而,排通信的包件交付率,特别是在覆盖范围以外地区,受到当前资源分配办法采用的随机选择算法的重大影响;在本文中,我们首先通过现行标准采用的随机选择算法分析碰撞概率;随后,我们调查深强化学习算法,该算法通过让代理商(车辆)从通信环境中学习而降低碰撞概率。 Monte Carlo模拟用于核查分析模型的结果,比较所讨论的两种算法之间的结果。数字结果显示,拟议的DRL算法在不同的车辆密度方面比随机选择算法相形一致,至少使低和高车辆密度的碰撞概率概率分别降低73%和45%。

0
下载
关闭预览

相关内容

【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐免费书|MIT出版《Reinforcement Learning: An Introduction》
全球人工智能
3+阅读 · 2017年12月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐免费书|MIT出版《Reinforcement Learning: An Introduction》
全球人工智能
3+阅读 · 2017年12月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员