The prevailing maximum likelihood estimators for inferring power law models from rank-frequency data are biased. The source of this bias is an inappropriate likelihood function. The correct likelihood function is derived and shown to be computationally intractable. A more computationally efficient method of approximate Bayesian computation (ABC) is explored. This method is shown to have less bias for data generated from idealised rank-frequency Zipfian distributions. However, the existing estimators and the ABC estimator described here assume that words are drawn from a simple probability distribution, while language is a much more complex process. We show that this false assumption leads to continued biases when applying any of these methods to natural language to estimate Zipf exponents. We recommend that researchers be aware of these biases when investigating power laws in rank-frequency data.


翻译:从等级频率数据推算权力法模型的通用最大概率估计值存在偏差。这种偏差的来源是一个不适当的概率函数。正确的概率函数产生并显示是难以计算性的。探索了一种计算效率更高的近似巴伊西亚计算法(ABC)的方法。这种方法对从理想的等级频率Zipfian分布中生成的数据的偏差较小。然而,此处所描述的现有估计值和ABC估计值假定单词是从简单的概率分布中提取的,而语言则是一个复杂得多的过程。我们表明,在用任何这些方法对自然语言进行估计齐普夫引文时,这种假假设会导致持续的偏差。我们建议研究人员在调查等级频率数据中的权力法时,意识到这些偏差。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
CornerNet: Detecting Objects as Paired Keypoints 论文笔记
统计学习与视觉计算组
7+阅读 · 2018年9月27日
已删除
将门创投
3+阅读 · 2018年8月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Entropic estimation of optimal transport maps
Arxiv
0+阅读 · 2021年9月24日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
CornerNet: Detecting Objects as Paired Keypoints 论文笔记
统计学习与视觉计算组
7+阅读 · 2018年9月27日
已删除
将门创投
3+阅读 · 2018年8月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员