The prevailing maximum likelihood estimators for inferring power law models from rank-frequency data are biased. The source of this bias is an inappropriate likelihood function. The correct likelihood function is derived and shown to be computationally intractable. A more computationally efficient method of approximate Bayesian computation (ABC) is explored. This method is shown to have less bias for data generated from idealised rank-frequency Zipfian distributions. However, the existing estimators and the ABC estimator described here assume that words are drawn from a simple probability distribution, while language is a much more complex process. We show that this false assumption leads to continued biases when applying any of these methods to natural language to estimate Zipf exponents. We recommend that researchers be aware of these biases when investigating power laws in rank-frequency data.
翻译:从等级频率数据推算权力法模型的通用最大概率估计值存在偏差。这种偏差的来源是一个不适当的概率函数。正确的概率函数产生并显示是难以计算性的。探索了一种计算效率更高的近似巴伊西亚计算法(ABC)的方法。这种方法对从理想的等级频率Zipfian分布中生成的数据的偏差较小。然而,此处所描述的现有估计值和ABC估计值假定单词是从简单的概率分布中提取的,而语言则是一个复杂得多的过程。我们表明,在用任何这些方法对自然语言进行估计齐普夫引文时,这种假假设会导致持续的偏差。我们建议研究人员在调查等级频率数据中的权力法时,意识到这些偏差。