Rationalization is fundamental to human reasoning and learning. NLP models trained to produce rationales along with predictions, called self-rationalization models, have been investigated for their interpretability and utility to end-users. However, the extent to which training with human-written rationales facilitates learning remains an under-explored question. We ask whether training models to self-rationalize can aid in their learning to solve tasks for the right reasons. Specifically, we evaluate how training self-rationalization models with free-text rationales affects robustness to spurious correlations in fine-tuned encoder-decoder and decoder-only models of six different sizes. We evaluate robustness to spurious correlations by measuring performance on 1) manually annotated challenge datasets and 2) subsets of original test sets where reliance on spurious correlations would fail to produce correct answers. We find that while self-rationalization can improve robustness to spurious correlations in low-resource settings, it tends to hurt robustness in higher-resource settings. Furthermore, these effects depend on model family and size, as well as on rationale content. Together, our results suggest that explainability can come at the cost of robustness; thus, appropriate care should be taken when training self-rationalizing models with the goal of creating more trustworthy models.


翻译:合理化对于人类的推理和学习来说是根本的。经过培训,可以提供理论依据和预测的NLP模型,称为自我合理化模型,已经调查了这些模型的可解释性和对最终用户的实用性。然而,使用人写理论的培训有助于学习的程度仍是一个未得到充分探讨的问题。我们问,自我合理化培训模型是否有助于他们学习如何解决工作上的适当原因。具体地说,我们评估使用自由文本理论的培训自我合理化模型如何影响稳健性,使其在精细调整的编码-脱coder和6个不同尺寸的只分解码模型中产生虚假的相关性。我们通过测量性能来评估虚假相关性的强性,方法包括:1)手动的附加挑战数据集和2)原始测试组的子集,在依赖刺激性相关性无法产生正确答案的情况下。我们发现,虽然自我合理化可以提高在低资源环境下的僵硬相关性的稳性,但往往损害高资源环境中的稳健性。此外,这些影响取决于模型的家庭和大小,以及理论内容。我们通过测量性强性模型来评估虚假性的相关性,因此,在采取更稳健的模型时,我们可以解释。

1
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员