We propose a causal framework to explain the catastrophic forgetting in Class-Incremental Learning (CIL) and then derive a novel distillation method that is orthogonal to the existing anti-forgetting techniques, such as data replay and feature/label distillation. We first 1) place CIL into the framework, 2) answer why the forgetting happens: the causal effect of the old data is lost in new training, and then 3) explain how the existing techniques mitigate it: they bring the causal effect back. Based on the framework, we find that although the feature/label distillation is storage-efficient, its causal effect is not coherent with the end-to-end feature learning merit, which is however preserved by data replay. To this end, we propose to distill the Colliding Effect between the old and the new data, which is fundamentally equivalent to the causal effect of data replay, but without any cost of replay storage. Thanks to the causal effect analysis, we can further capture the Incremental Momentum Effect of the data stream, removing which can help to retain the old effect overwhelmed by the new data effect, and thus alleviate the forgetting of the old class in testing. Extensive experiments on three CIL benchmarks: CIFAR-100, ImageNet-Sub&Full, show that the proposed causal effect distillation can improve various state-of-the-art CIL methods by a large margin (0.72%--9.06%).


翻译:我们提出一个因果框架来解释在升级学习中灾难性忘却的灾难性后果,然后得出一种与现有的反移植技术(如数据重放和特性/标签蒸馏法)相一致的新型蒸馏方法。我们首先提出将CIL置于框架之中,2 回答为什么忘记发生:新培训中丢失了旧数据的因果效应,然后3 解释现有技术如何减轻这种后果:它们带来因果关系。根据该框架,我们发现尽管特性/标签蒸馏是储存效率高的,但其因果效应与现有反移植技术(如数据重放和特性/标签蒸馏法)不相符,然而,数据重放保存保存了这种效果。为此,我们提议淡化旧数据与新数据之间的相互交错效应,这从根本上相当于数据重放的因果效应,但无需再玩存储成本。由于对因果效应的分析,我们可以进一步捕捉到数据流的增量调调调效应,消除这种效应有助于保留新数据效果所承受的旧效果,而其因果效应则由数据再放数据重现。为此,我们提议通过重放数据再放数据再放数据效果来将旧的C- IM IM IM II 3 改进旧测试中,从而减轻了C- IM IM IMLILLLLLA 3 改进了旧的大规模测试。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
126+阅读 · 2020年5月14日
因果关联学习,Causal Relational Learning
专知会员服务
179+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年4月28日
Arxiv
0+阅读 · 2021年4月27日
Arxiv
14+阅读 · 2020年12月17日
Anomalous Instance Detection in Deep Learning: A Survey
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员