A Boolean maximum constraint satisfaction problem, Max-CSP($f$), is specified by a constraint function $f:\{-1,1\}^k\to\{0,1\}$; an instance on $n$ variables is given by a list of constraints applying $f$ on a tuple of "literals" of $k$ distinct variables chosen from the $n$ variables. Chou, Golovnev, and Velusamy [CGV20] obtained explicit constants characterizing the streaming approximability of all symmetric Max-2CSPs. More recently, Chou, Golovnev, Sudan, and Velusamy [CGSV21] proved a general dichotomy theorem tightly characterizing the approximability of Boolean Max-CSPs with respect to sketching algorithms. For every $f$, they showed that there exists an optimal approximation ratio $\alpha(f)\in (0,1]$ such that for every $\epsilon>0$, Max-CSP($f$) is $(\alpha(f)-\epsilon)$-approximable by a linear sketching algorithm in $O(\log n)$ space, but any $(\alpha(f)+\epsilon)$-approximation sketching algorithm for Max-CSP($f$) requires $\Omega(\sqrt{n})$ space. In this work, we build on the [CGSV21] dichotomy theorem and give closed-form expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. The functions include $k$AND and Th$_k^{k-1}$ (the ``weight-at-least-$(k-1)$'' threshold function on $k$ variables). In particular, letting $\alpha'_k = 2^{-(k-1)} (1-k^{-2})^{(k-1)/2}$, we show that for odd $k \geq 3$, $\alpha(k$AND$ = \alpha'_k$; for even $k \geq 2$, $\alpha(k$AND$) = 2\alpha'_{k+1}$; and for even $k \geq 2$, $\alpha($Th$_k^{k-1}) = \frac{k}2\alpha'_{k-1}$. We also resolve the ratio for the ``weight-exactly-$\frac{k+1}2$'' function for odd $k \in \{3,\ldots,51\}$ as well as fifteen other functions. These closed-form expressions need not have existed just given the [CGSV21] dichotomy. For arbitrary threshold functions, we also give optimal "bias-based" approximation algorithms generalizing [CGV20] and simplifying [CGSV21].
翻译:最大限制满意度问题, 最大限制 Max- CSP ($f$), 由限制函数指定 $ f: 1, 1, 1\k美元, 1美元; 美元变量的例子由一系列限制来给出, 在从 $ 变量中选择的“ literal” 上, 以美元为单位。 Cho, Golovnev 和 Velusamy [CGV20] 获得了清晰的常数, 显示所有对称 Max-2CSP 的顺差 。 最近, Chou, Golovnev, 苏丹, 和 Velusamy [GSV21, 美元 美元 美元, 将Boolean Max- CSP 的近似性特征严格定性 。 对于每美元, 美元, 它们显示 $\pha( f) 美元 的近似位比率 。