In this work we consider the approximability of $\textsf{Max-CSP}(f)$ in the context of sketching algorithms and completely characterize the approximability of all Boolean CSPs. Specifically, given $f$, $\gamma$ and $\beta$ we show that either (1) the $(\gamma,\beta)$-approximation version of $\textsf{Max-CSP}(f)$ has a linear sketching algorithm using $O(\log n)$ space, or (2) for every $\epsilon > 0$ the $(\gamma-\epsilon,\beta+\epsilon)$-approximation version of $\textsf{Max-CSP}(f)$ requires $\Omega(\sqrt{n})$ space for any sketching algorithm. We also prove lower bounds against streaming algorithms for several CSPs. In particular, we recover the streaming dichotomy of [CGV20] for $k=2$ and show streaming approximation resistance of all CSPs for which $f^{-1}(1)$ supports a distribution with uniform marginals. Our positive results show wider applicability of bias-based algorithms used previously by [GVV17] and [CGV20] by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [KKS15], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results.
翻译:在这项工作中,我们考虑$\ textsf{Max-CSP}(f) 在草图算法的背景下, $\ textsf{Max- CSP}(f) 的近似性(f) 。 具体来说, $( gamma) $\ gamma$ 和 $\ beta$ 美元。 我们发现, $( gamma,\beta) $- accolomation 版本的 $( textsf{Max- CSP} (f) (f) 中, $( $) 的线性草图算算法使用 $( log n) 空间, 或 (2) 美元 > (efslon) 和 $( gepsilon) 和 0$( blace- g) SP) 的每张可适用性( $( g) 美元, 美元) 美元( betacc) 美元) 美元( 美元) 美元 (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) ) (c) (c) ) (c) ) (c) (l) (l (l) (l (l (l) (l (l (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l (l (l (l) (l) (