We developed a system able to automatically solve logical puzzles in natural language. Our solution is composed by a parser and an inference module. The parser translates the text into first order logic (FOL), while the MACE4 model finder is used to compute the models of the given FOL theory. We also empower our software agent with the capability to provide Yes/No answers to natural language questions related to each puzzle. Moreover, in line with Explainalbe Artificial Intelligence (XAI), the agent can back its answer, providing a graphical representation of the proof. The advantage of using reasoning for Natural Language Understanding (NLU) instead of Machine learning is that the user can obtain an explanation of the reasoning chain. We illustrate how the system performs on various types of natural language puzzles, including 382 knights and knaves puzzles. These features together with the overall performance rate of 80.89\% makes the proposed solution an improvement upon similar solvers for natural language understanding in the puzzles domain.


翻译:我们开发了一个能够自动解答自然语言中逻辑谜题的系统。 我们的解答是由一个解析器和一个推理模块组成的。 解析器将文字翻译为一阶逻辑( FOL), 而MACE4 模型查找器被用来计算给定的 FOL 理论的模型模型。 我们还赋予我们的软件代理器能力, 使其能够对与每个解谜有关的自然语言问题提供是/ 否答案。 此外, 根据 Exploralfical Intelligence (XAI), 代理器可以支持其答案, 提供证据的图形表达。 使用自然语言理解( NLU) 而不是机器学习的推理的优点是用户可以获得对逻辑链的解释。 我们演示了系统如何在各种自然语言谜题上进行演化, 包括382 骑士和 knaves 拼图。 这些特性加上80. 89\\\\\ 的总体性能, 使得拟议解决方案改进了类似解算器在谜题域中了解自然语言的解算法。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
4+阅读 · 2019年9月5日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员