Let $\mathbb{F}_{q}$ be the finite field of $q$ elements and let $D_{2n}=\langle x,y\mid x^n=1, y^2=1, yxy=x^{n-1}\rangle$ be the dihedral group of order $n$. Left ideals of the group algebra $\mathbb{F}_{q}[D_{2n}]$ are known as left dihedral codes over $\mathbb{F}_{q}$ of length $2n$, and abbreviated as left $D_{2n}$-codes. Let ${\rm gcd}(n,q)=1$. In this paper, we give an explicit representation for the Euclidean hull of every left $D_{2n}$-code over $\mathbb{F}_{q}$. On this basis, we determine all distinct Euclidean LCD codes and Euclidean self-orthogonal codes which are left $D_{2n}$-codes over $\mathbb{F}_{q}$. In particular, we provide an explicit representation and a precise enumeration for these two subclasses of left $D_{2n}$-codes and self-dual left $D_{2n}$-codes, respectively. Moreover, we give a direct and simple method for determining the encoder (generator matrix) of any left $D_{2n}$-code over $\mathbb{F}_{q}$, and present several numerical examples to illustrative our applications.
翻译:$\ mathb{F\q}$[D\2n}$(美元)的限定字段, 以美元计值, 以美元计值 x, y\\\ mid xn=1, y2=1, yxy=xn-1 ⁇ rangle$为美元。 以美元计值组的左翼理想以美元计值, 以美元计值, 以美元计值, 以美元计值值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 直接计值, 美元=1美元。 在本文中, 我们为每左翼的 Euclideidean 机体提供一个清晰的表示值, 以美元表示值表示值, 以美元计值 。