In this paper, for an odd prime $p$, by extending Li et al.'s construction \cite{CL2016}, several classes of two-weight and three-weight linear codes over the finite field $\mathbb{F}_p$ are constructed from a defining set, and then their complete weight enumerators are determined by using Weil sums. Furthermore, we show that some examples of these codes are optimal or almost optimal with respect to the Griesmer bound. Our results generalize the corresponding results in \cite{CL2016, GJ2019}.
翻译:在本文中,对于奇特的美元来说,用Li等人的建筑 \ cite{CL2016}来扩展Li等人的构造,将若干等级的双重量和三重量线性代码从有限的字段$$\mathbb{F ⁇ p$上构建出来,然后用Weil的数值来确定它们的全部重量计算器。此外,我们表明,这些代码中的一些例子对于Griesmer的装订来说是最佳的或几乎是最佳的。我们的结果概括了在\cite{CL2016,GJ2019}中的相应结果。