This paper investigates the problem of bounding possible output from a counterfactual query given a set of observational data. While various works of literature have described methodologies to generate efficient algorithms that provide an optimal bound for the counterfactual query, all of them assume a finite-horizon causal diagram. This paper aims to extend the previous work by modifying Q-learning algorithm to provide informative bounds of a causal query given an infinite-horizon causal diagram. Through simulations, our algorithms are proven to perform better compared to existing algorithm.
翻译:本文根据一组观察数据调查从反事实查询中将可能的输出加以约束的问题。 虽然各种文献文献都描述了产生有效算法的方法,这些算法为反事实查询提供了最佳的界限, 但所有这些文献都假定了一个有限等分因果图。 本文的目的是通过修改Q- 学习算法来扩大先前的工作范围, 以提供一个无限等分因果图, 提供因果查询的信息界限。 通过模拟, 我们的算法被证明比现有的算法效果更好 。