This study provides an abstract framework to analyze mixed formulations in viscoelasticity, in the classic saddle point form. Standard hypothesis for mixed methods are adapted to the Volterra type equations in order to obtain stability of the proposed problem. Error estimates are derived for suitable finite element spaces. We apply the developed theory to a bending moment formulation for a linear viscoelastic Timoshenko beam and for the Laplace operator with memory terms. For both problems we report numerical results to asses the performance of the methods.


翻译:这项研究提供了一个抽象的框架,以经典马鞍形式分析粘附性混合配方。混合方法的标准假设适用于Volterra型方程式,以获得拟议问题的稳定性。错误估计用于合适的有限元素空间。我们将开发的理论应用到一个弯曲的瞬间配方中,用于线性粘结性Timoshenko光束和用记忆术语的Laplace操作员。对于这两个问题,我们报告数字结果,以评估方法的性能。

0
下载
关闭预览

相关内容

在数学中,鞍点或极大极小点是函数图形表面上的一点,其正交方向上的斜率(导数)都为零,但它不是函数的局部极值。鞍点是在某一轴向(峰值之间)有一个相对最小的临界点,在交叉轴上有一个相对最大的临界点。
专知会员服务
45+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员