This study provides an abstract framework to analyze mixed formulations in viscoelasticity, in the classic saddle point form. Standard hypothesis for mixed methods are adapted to the Volterra type equations in order to obtain stability of the proposed problem. Error estimates are derived for suitable finite element spaces. We apply the developed theory to a bending moment formulation for a linear viscoelastic Timoshenko beam and for the Laplace operator with memory terms. For both problems we report numerical results to asses the performance of the methods.
翻译:这项研究提供了一个抽象的框架,以经典马鞍形式分析粘附性混合配方。混合方法的标准假设适用于Volterra型方程式,以获得拟议问题的稳定性。错误估计用于合适的有限元素空间。我们将开发的理论应用到一个弯曲的瞬间配方中,用于线性粘结性Timoshenko光束和用记忆术语的Laplace操作员。对于这两个问题,我们报告数字结果,以评估方法的性能。