In this article, we first propose generalized row/column matrix Kendall's tau for matrix-variate observations that are ubiquitous in areas such as finance and medical imaging. For a random matrix following a matrix-variate elliptically contoured distribution, we show that the eigenspaces of the proposed row/column matrix Kendall's tau coincide with those of the row/column scatter matrix respectively, with the same descending order of the eigenvalues. We perform eigenvalue decomposition to the generalized row/column matrix Kendall's tau for recovering the loading spaces of the matrix factor model. We also propose to estimate the pair of the factor numbers by exploiting the eigenvalue-ratios of the row/column matrix Kendall's tau. Theoretically, we derive the convergence rates of the estimators for loading spaces, factor scores and common components, and prove the consistency of the estimators for the factor numbers without any moment constraints on the idiosyncratic errors. Thorough simulation studies are conducted to show the higher degree of robustness of the proposed estimators over the existing ones. Analysis of a financial dataset of asset returns and a medical imaging dataset associated with COVID-19 illustrate the empirical usefulness of the proposed method.


翻译:在本篇文章中,我们首先提出在财务和医疗成像等领域普遍存在的通用行/列矩阵Kendall矩阵图案,以进行总行/列矩阵变异式观测;对于在矩阵变异式螺旋式分布后随机矩阵,我们提出,拟议的行/列矩阵 Kendall 矩阵图案的精液空间分别与行/列分布矩阵的精液空间相吻合,其精液值排序顺序相同;我们在恢复矩阵要素模型的装货空间方面对通用行/列母体矩阵 Kendall 的图案进行废气价值分解;我们还提议通过利用行/列矩阵矩阵的精液-矩阵图案分布,对要素数的组合进行估计;从理论上讲,我们得出装载空间、系数计分数和普通元值的精度的估测结果;我们证明,在恢复矩阵要素模型的装货空间的装载空间/列母体矩阵矩阵表时,对要素数的估测值的一致性,而无需任何时间限制。 我们还提议,通过利用行/校正模型分析的现有数据分析方法,对数值的精度进行精确性分析。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员