Machine learning (ML) has entered the mobile era where an enormous number of ML models are deployed on edge devices. However, running common ML models on edge devices continuously may generate excessive heat from the computation, forcing the device to "slow down" to prevent overheating, a phenomenon called thermal throttling. This paper studies the impact of thermal throttling on mobile phones: when it occurs, the CPU clock frequency is reduced, and the model inference latency may increase dramatically. This unpleasant inconsistent behavior has a substantial negative effect on user experience, but it has been overlooked for a long time. To counter thermal throttling, we propose to utilize dynamic networks with shared weights and dynamically shift between large and small ML models seamlessly according to their thermal profile, i.e., shifting to a small model when the system is about to throttle. With the proposed dynamic shifting, the application runs consistently without experiencing CPU clock frequency degradation and latency increase. In addition, we also study the resulting accuracy when dynamic shifting is deployed and show that our approach provides a reasonable trade-off between model latency and model accuracy.


翻译:机器学习( ML) 已经进入移动时代, 在边缘设备上部署了大量 ML 模型。 但是, 在边缘设备上持续运行常见 ML 模型可能会从计算中产生过热, 迫使设备“ 慢下来” 防止过热, 这是一种叫作热抽动的现象。 本文研究热抽动对移动电话的影响: 当热抽动发生时, CPU 时钟频率会降低, 模型推导延迟可能会急剧增加 。 这种不愉快的不一致行为对用户的体验有相当大的负面影响, 但长期以来一直被忽视 。 为了对抗热抽动, 我们提议使用具有共享重量的动态网络, 并且根据大小 ML 模型的热配置进行动态移动。 也就是说, 当系统即将发生电动时, 将转换为小型模型 。 随着拟议的动态变换, 应用程序会持续运行, 而不经历 CPUPU 时的频率退化和延缓度增加 。 此外, 我们还研究在动态变换时产生的准确性, 并显示我们的方法提供了在模型拉动和模型准确性之间进行合理的交换。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员