Deep Neural Networks (DNNs) are very popular because of their high performance in various cognitive tasks in Machine Learning (ML). Recent advancements in DNNs have brought beyond human accuracy in many tasks, but at the cost of high computational complexity. To enable efficient execution of DNN inference, more and more research works, therefore, exploit the inherent error resilience of DNNs and employ Approximate Computing (AC) principles to address the elevated energy demands of DNN accelerators. This article provides a comprehensive survey and analysis of hardware approximation techniques for DNN accelerators. First, we analyze the state of the art and by identifying approximation families, we cluster the respective works with respect to the approximation type. Next, we analyze the complexity of the performed evaluations (with respect to the dataset and DNN size) to assess the efficiency, the potential, and limitations of approximate DNN accelerators. Moreover, a broad discussion is provided, regarding error metrics that are more suitable for designing approximate units for DNN accelerators as well as accuracy recovery approaches that are tailored to DNN inference. Finally, we present how Approximate Computing for DNN accelerators can go beyond energy efficiency and address reliability and security issues, as well.


翻译:深神经网络(DNN)非常受欢迎,因为它们在机器学习(ML)中的各种认知任务中表现很高。 DNN最近的进步使许多任务超出了人的准确性,但代价是高计算复杂性。因此,为了能够高效率地执行DNN的推断,越来越多的研究工作利用DNN的内在误差复原力,并采用近似计算机(AC)原则来解决DNN加速器的高能量需求。这篇文章为DNN加速器提供了对硬件近似技术的全面调查和分析。首先,我们分析艺术状况,并通过确定近似型号,将相关工作归为近似型号。接下来,我们分析所进行的评估的复杂性(关于数据集和DNNN的大小),以评估近似DNN加速器的效率、潜力和局限性。此外,还广泛讨论了更适合DNNN的近似加速器设计近似单位的误差度度度测量方法,以及符合DNNN的精确度回收方法。最后,我们介绍了已进行的评估(关于数据集和DNNNNP的可靠性,以及D的计算机效率问题。

2
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
37+阅读 · 2021年2月10日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
37+阅读 · 2021年2月10日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员