Since compiler optimization is the most common source contributing to binary code differences in syntax, testing the resilience against the changes caused by different compiler optimization settings has become a standard evaluation step for most binary diffing approaches. For example, 47 top-venue papers in the last 12 years compared different program versions compiled by default optimization levels (e.g., -Ox in GCC and LLVM). Although many of them claim they are immune to compiler transformations, it is yet unclear about their resistance to non-default optimization settings. Especially, we have observed that adversaries explored non-default compiler settings to amplify malware differences. This paper takes the first step to systematically studying the effectiveness of compiler optimization on binary code differences. We tailor search-based iterative compilation for the auto-tuning of binary code differences. We develop BinTuner to search near-optimal optimization sequences that can maximize the amount of binary code differences. We run BinTuner with GCC 10.2 and LLVM 11.0 on SPEC benchmarks (CPU2006 & CPU2017), Coreutils, and OpenSSL. Our experiments show that at the cost of 279279 to 1,8811,881 compilation iterations, BinTuner can find custom optimization sequences that are substantially better than the general -Ox settings. BinTuner's outputs seriously undermine prominent binary diffing tools' comparisons. In addition, the detection rate of the IoT malware variants tuned by BinTuner falls by more than 50%. Our findings paint a cautionary tale for security analysts that attackers have a new way to mutate malware code cost-effectively, and the research community needs to step back to reassess optimization-resistance evaluations.


翻译:由于编译优化是最常见的来源, 从而导致语法中的二进制代码差异, 测试不同编译优化设置导致的变化的抗御能力已成为大多数二进制调试方法的标准评估步骤。 例如, 在过去12年里, 47 个顶尖版本纸质文件与以默认优化级别( 例如, 海湾合作委员会 和 LLLVM ) 汇编的不同程序版本相比, 过去12年中, 47个顶层纸质文件比以默认优化级别( 例如, 海湾合作委员会 和 LLVM ) 。 尽管其中许多人声称他们不受编译代码变的影响, 但他们对非默认优化设置的阻力尚不清楚。 特别是, 我们观察到, 对手探索了非默认的编译器设置以扩大恶意软件差异。 本文迈出了第一步, 系统化了对二进制代码差异的精度优化效果。 我们的实验显示, 2779 & CPUU2017, Coreutierls, 以及 Opreal- laseralal- Serviews, 需要更精确地进行编译。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月15日
Arxiv
0+阅读 · 2021年5月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员