Surface electromyogram (sEMG) is arguably the most sought-after physiological signal with a broad spectrum of biomedical applications, especially in miniaturized rehabilitation robots such as multifunctional prostheses. The widespread use of sEMG to drive pattern recognition (PR)-based control schemes is primarily due to its rich motor information content and non-invasiveness. Moreover, sEMG recordings exhibit non-linear and non-uniformity properties with inevitable interferences that distort intrinsic characteristics of the signal, precluding existing signal processing methods from yielding requisite motor control information. Therefore, we propose a multiresolution decomposition driven by dual-polynomial interpolation (MRDPI) technique for adequate denoising and reconstruction of multi-class EMG signals to guarantee the dual-advantage of enhanced signal quality and motor information preservation. Parameters for optimal MRDPI configuration were constructed across combinations of thresholding estimation schemes and signal resolution levels using EMG datasets of amputees who performed up to 22 predefined upper-limb motions acquired in-house and from the public NinaPro database. Experimental results showed that the proposed method yielded signals that led to consistent and significantly better decoding performance for all metrics compared to existing methods across features, classifiers, and datasets, offering a potential solution for practical deployment of intuitive EMG-PR-based control schemes for multifunctional prostheses and other miniaturized rehabilitation robotic systems that utilize myoelectric signals as control inputs.
翻译:表面电离图(SEMG)可以说是最需要的生理信号,其生物医学应用范围很广,特别是在多功能假肢等微型修复机器人中。广泛使用SEMG推动模式识别(PR)控制机制,主要是因为其机头信息内容丰富,而且没有入侵性。此外,SEMG记录显示非线性和不统一性特性,不可避免地干扰信号的内在特征,使现有信号处理方法无法产生必要的运动控制信息。因此,我们提议采用多分辨率分解法,由双极间互换(MRDPI)技术驱动,以充分分解和重建多级EMG信号,以保证增强信号质量和运动信息保存的双重优势。SEMG记录显示,在使用EMG数据集进行非线性和非统一性干扰,从而无法使现有信号处理方法从内部和公共数据库获得22种预先定义的上层移动控制信息。因此,我们提议采用多分辨率互换技术,实验结果显示,将我方的部署方法转化为各种透明性指标性指标,从而提供各种稳定性能,从而形成各种通用的模型,从而形成各种可操作性管理方法,从而形成各种可操作性方法,从而形成各种可操作性管理方法,从而产生各种可实现各种可操作性结果。