This paper introduces nonblocking transaction composition (NBTC), a new methodology for atomic composition of nonblocking operations on concurrent data structures. Unlike previous software transactional memory (STM) approaches, NBTC leverages the linearizability of existing nonblocking structures, reducing the number of memory accesses that must be executed together, atomically, to only one per operation in most cases (these are typically the linearizing instructions of the constituent operations). Our obstruction-free implementation of NBTC, which we call Medley, makes it easy to transform most nonblocking data structures into transactional counterparts while preserving their liveness and high concurrency. In our experiments, Medley outperforms Lock-Free Transactional Transform (LFTT), the fastest prior competing methodology, by 40--170%. The marginal overhead of Medley's transactional composition, relative to separate operations performed in succession, is roughly 2.2$\times$. For persistent data structures, we observe that failure atomicity for transactions can be achieved "almost for free" with epoch-based periodic persistence. Toward that end, we integrate Medley with nbMontage, a general system for periodically persistent data structures. The resulting txMontage provides ACID transactions and achieves throughput up to two orders of magnitude higher than that of the OneFile persistent STM system.


翻译:本文介绍了非阻塞交易构成(NBTC),这是在并行数据结构上非阻塞操作的原子构成的新方法。与以往的软件交易存储(STM)方法不同,NBTC利用了现有非阻塞结构的线性可扩展性,将大多数情况下必须一起执行的存储存取数量从原子上减少到每个操作仅一个(通常是各组成部分业务的线性指令)。我们称之为Medley的无阻碍实施NBTC,使我们很容易将大多数非阻塞数据结构转化为交易对应机构,同时保持其活力和高通货率。在我们实验中,Medley超越了以前最快的竞争方法-无锁交易变形(LFTT),增加了40-170 % 。Medley的交易构成的边际间接,相对于在连续运行中进行的不同操作,约为2.2美元/美元。关于持续的数据结构,我们发现交易的失败原子性可以“最免费”实现,同时保持其活力和高调。为此,我们把Medley与NbMetile和NbMontage(LT)系统整合了一个不固定的高级系统。

0
下载
关闭预览

相关内容

GitHub 发布的文本编辑器。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月2日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员