Many functional magnetic resonance imaging (fMRI) studies rely on estimates of hierarchically organised brain networks whose segregation and integration reflect the dynamic transitions of latent cognitive states. However, most existing methods for estimating the community structure of networks from both individual and group-level analysis neglect the variability between subjects and lack validation. In this paper, we develop a new multilayer community detection method based on Bayesian latent block modelling. The method can robustly detect the group-level community structure of weighted functional networks that give rise to hidden brain states with an unknown number of communities and retain the variability of individual networks. For validation, we propose a new community structure-based multivariate Gaussian generative model convolved with haemodynamic response function to simulate synthetic fMRI signal. Our result shows that the inferred community memberships using hierarchical Bayesian analysis are consistent with the predefined node labels in the generative model. The method is also tested using real working memory task-fMRI data of 100 unrelated healthy subjects from the Human Connectome Project. The results show distinctive community structures and subtle connectivity patterns between 2-back, 0-back, and fixation conditions, which may reflect cognitive and behavioural states under working memory task conditions.
翻译:许多功能性磁共振成像(fMRI)研究依赖于对分层组织起来的大脑网络的估计,这些网络的隔离和整合反映了潜在认知状态的动态转变。然而,从个人和群体层面分析的多数现有估计网络社区结构的方法忽视了不同对象之间的差异和缺乏验证。在本文件中,我们根据Bayesian潜伏区块建模开发了一种新的多层次社区探测方法。该方法可以有力地检测到群体一级加权功能网络的群落结构,这种结构导致隐藏的大脑国家,其社区数目未知,并保留个别网络的变异性。为了验证,我们建议采用一种新的基于社区结构的多变异性高斯的基因变异模型,与热感应反应功能融合到模拟合成的FMRI信号。我们的结果显示,使用等级性巴伊西亚分析推断的社区成员符合基因化模型中预先定义的节点标签。该方法还可以使用人类连接项目100个不相干的健康对象的实际工作记忆任务-fRI数据进行测试。结果显示,在2个背、0背和修正条件下,可以反映认知和行为记忆和记忆状况的精确状态。