We consider the energy complexity of the leader election problem in the single-hop radio network model, where each device has a unique identifier in $\{1, 2, \ldots, N\}$. Energy is a scarce resource for small battery-powered devices. For such devices, most of the energy is often spent on communication, not on computation. To approximate the actual energy cost, the energy complexity of an algorithm is defined as the maximum over all devices of the number of time slots where the device transmits or listens. Much progress has been made in understanding the energy complexity of leader election in radio networks, but very little is known about the trade-off between time and energy. $\textbf{Time-energy trade-off:}$ For any $k \geq \log \log N$, we show that a leader among at most $n$ devices can be elected deterministically in $O(n^{1+\epsilon}) + O(k \cdot N^{1/k})$ time and $O(k)$ energy if each device can simultaneously transmit and listen, where $\epsilon > 0$ is any small constant. This improves upon the previous $O(N)$-time $O(\log \log N)$-energy algorithm by Chang et al. [STOC 2017]. We provide lower bounds to show that the time-energy trade-off of our algorithm is near-optimal. $\textbf{Dense instances:}$ For the dense instances where the number of devices is $n = \Theta(N)$, we design a deterministic leader election algorithm using only $O(1)$ energy. This improves upon the $O(\log^* N)$-energy algorithm by Jurdzi\'{n}ski et al. [PODC 2002] and the $O(\alpha(N))$-energy algorithm by Chang et al. [STOC 2017]. More specifically, we show that the optimal deterministic energy complexity of leader election is $\Theta\left(\max\left\{1, \log \frac{N}{n}\right\}\right)$ if the devices cannot simultaneously transmit and listen, and it is $\Theta\left(\max\left\{1, \log \log \frac{N}{n}\right\}\right)$ if they can.


翻译:我们认为,在单节电台网络模式中,领导选举问题的能源复杂性是最小的。 每个设备在$1, 2, heldots, n ⁇ $。 能源是小电池动力装置的稀缺资源。 对于这些装置, 大部分能源通常都花在通信上, 而不是计算上。 为了估计实际的能源成本, 算法的能源复杂性被定义为设备传输或收听的时间档数中所有设备的最大值。 在理解电台网络中领导选举的能源复杂性方面已经取得了很大进展, 但对于时间和能源之间的交易却知得很少。 $trebb{rock\ dalot; 任何美元=qegral_ 电算值, 美元=美元=美元=美元。

0
下载
关闭预览

相关内容

STOC论文的典型但非排他性的主题包括基础领域,如算法和数据结构、计算复杂性、并行和分布式算法、量子计算、连续和离散优化、计算中的随机性、近似算法、组合数学和算法图论,密码学,计算几何,代数计算,逻辑计算应用,算法编码理论。典型的主题还包括计算和基础方面的领域,如机器学习,经济学,公平性,隐私,网络,数据管理和生物学。STOC鼓励那些拓宽计算理论研究范围,或提出可从理论调查和分析中受益的重要问题的论文。官网链接:http://acm-stoc.org/stoc2019/
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
39+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Windows 提权-快速查找 Exp
黑白之道
3+阅读 · 2019年1月23日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月5日
Arxiv
0+阅读 · 2021年7月3日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Windows 提权-快速查找 Exp
黑白之道
3+阅读 · 2019年1月23日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Top
微信扫码咨询专知VIP会员