Given a weighted undirected graph $G=(V,E,w)$, a hopset $H$ of hopbound $\beta$ and stretch $(1+\epsilon)$ is a set of edges such that for any pair of nodes $u, v \in V$, there is a path in $G \cup H$ of at most $\beta$ hops, whose length is within a $(1+\epsilon)$ factor from the distance between $u$ and $v$ in $G$. We show the first efficient decremental algorithm for maintaining hopsets with a polylogarithmic hopbound. The update time of our algorithm matches the best known static algorithm up to polylogarithmic factors. All the previous decremental hopset constructions had a superpolylogarithmic (but subpolynomial) hopbound of $2^{\log^{\Omega(1)} n}$ [Bernstein, FOCS'09; HKN, FOCS'14; Chechik, FOCS'18]. By applying our decremental hopset construction, we get improved or near optimal bounds for several distance problems. Most importantly, we show how to decrementally maintain $(2k-1)(1+\epsilon)$-approximate all-pairs shortest paths (for any constant $k \geq 2)$, in $\tilde{O}(n^{1/k})$ amortized update time and $O(k)$ query time. This significantly improves (by a polynomial factor) over the update-time of the best previously known decremental algorithm in the constant query time regime. Moreover, it improves over the result of [Chechik, FOCS'18] that has a query time of $O(\log \log(nW))$, where $W$ is the aspect ratio, and the amortized update time is $n^{1/k}\cdot(\frac{1}{\epsilon})^{\tilde{O}(\sqrt{\log n})}$. For sparse graphs our construction nearly matches the best known static running time/ query time tradeoff.
翻译:以18美元( V, E, w) 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面,平面平面平面,平面平面平面平面平面平面,平面,平面平面平面,平面平面平面平面,平面平面平面平面平面平面,平面平面平面平面平面,平面,平面平面,平面平面平面平面,平面,平面平面平面平面,平面平面平面平面,平面平面平面平面,平面平面平面,平面平面平面平面平面平面平面平面,平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面