In the age of neural networks and Internet of Things (IoT), the search for new neural network architectures capable of operating on devices with limited computing power and small memory size is becoming an urgent agenda. Designing suitable algorithms for IoT applications is an important task. The paper proposes a feed forward LogNNet neural network, which uses a semi-linear Henon type discrete chaotic map to classify MNIST-10 dataset. The model is composed of reservoir part and trainable classifier. The aim of the reservoir part is transforming the inputs to maximize the classification accuracy using a special matrix filing method and a time series generated by the chaotic map. The parameters of the chaotic map are optimized using particle swarm optimization with random immigrants. As a result, the proposed LogNNet/Henon classifier has higher accuracy and the same RAM usage, compared to the original version of LogNNet, and offers promising opportunities for implementation in IoT devices. In addition, a direct relation between the value of entropy and accuracy of the classification is demonstrated.
翻译:在神经网络和物联网(IoT)时代,寻找能够使用计算功率有限和记忆力小的装置的新神经网络结构正在成为一项紧迫的议程。为IoT应用设计适当的算法是一项重要任务。文件提议了一个前推进LogNNet神经网络,使用半线性Hennon型离散无序地图对MONIS-10数据集进行分类。模型由储油层部分和可培训的分类器组成。储油层部分的目的是利用一种特殊的矩阵归档法和混乱的地图产生的时间序列来改变投入,以尽量提高分类的准确性。混乱地图的参数是利用随机移民的粒子微温优化来优化的。因此,拟议的LogNNet/Henon分类器与原始版本的LogNNet相比,具有更高的准确性和相同的RAM使用率,并为在IoT装置中实施提供有希望的机会。此外,还演示了昆虫值与分类精度之间的直接关系。