We investigate training machine learning (ML) models across a set of geo-distributed, resource-constrained clusters of devices through unmanned aerial vehicles (UAV) swarms. The presence of time-varying data heterogeneity and computational resource inadequacy among device clusters motivate four key parts of our methodology: (i) stratified UAV swarms of leader, worker, and coordinator UAVs, (ii) hierarchical nested personalized federated learning (HN-PFL), a distributed ML framework for personalized model training across the worker-leader-core network hierarchy, (iii) cooperative UAV resource pooling to address computational inadequacy of devices by conducting model training among the UAV swarms, and (iv) model/concept drift to model time-varying data distributions. In doing so, we consider both micro (i.e., UAV-level) and macro (i.e., swarm-level) system design. At the micro-level, we propose network-aware HN-PFL, where we distributively orchestrate UAVs inside swarms to optimize energy consumption and ML model performance with performance guarantees. At the macro-level, we focus on swarm trajectory and learning duration design, which we formulate as a sequential decision making problem tackled via deep reinforcement learning. Our simulations demonstrate the improvements achieved by our methodology in terms of ML performance, network resource savings, and swarm trajectory efficiency.


翻译:我们调查了一套通过无人驾驶航空器(无人驾驶飞行器)群集的地理分布和资源受限制的各类装置的培训机器学习模型。装置群中存在时间变化的数据差异和计算资源不足,促使我们的方法有四个关键部分:(一) 领导、工人和协调员无人驾驶航空器的分层无人驾驶航空器群;(二) 等级式嵌巢式个人化联合会学习(HN-PFL)系统设计。在微观一级,我们建议通过工人-领导核心网络层次进行个人化模型培训的分布式模型框架;(三) 合作使用无人驾驶航空器资源汇集,通过在无人驾驶飞行器群群中进行模型培训,解决设备计算不足的问题;(四) 模型/概念漂移,以模拟时间变化数据分布为模式。我们这样做时,我们考虑微观(即无人驾驶航空器级)和宏观(即暖级)个人化联合会系统设计。在微观一级,我们建议网络-意识型网络改进HN-PFFL,通过在深度消费中进行分化分析,我们通过空间网络内部性能化的学习过程,我们以优化的进度方法,我们通过深度学习了我们的研究周期性化的进度方法,我们以优化的进度学习了我们学习了我们的能源周期周期性效率。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年6月30日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月1日
Arxiv
0+阅读 · 2022年11月29日
Arxiv
0+阅读 · 2022年11月29日
Arxiv
20+阅读 · 2022年10月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员