We investigate training machine learning (ML) models across a set of geo-distributed, resource-constrained clusters of devices through unmanned aerial vehicles (UAV) swarms. The presence of time-varying data heterogeneity and computational resource inadequacy among device clusters motivate four key parts of our methodology: (i) stratified UAV swarms of leader, worker, and coordinator UAVs, (ii) hierarchical nested personalized federated learning (HN-PFL), a distributed ML framework for personalized model training across the worker-leader-core network hierarchy, (iii) cooperative UAV resource pooling to address computational inadequacy of devices by conducting model training among the UAV swarms, and (iv) model/concept drift to model time-varying data distributions. In doing so, we consider both micro (i.e., UAV-level) and macro (i.e., swarm-level) system design. At the micro-level, we propose network-aware HN-PFL, where we distributively orchestrate UAVs inside swarms to optimize energy consumption and ML model performance with performance guarantees. At the macro-level, we focus on swarm trajectory and learning duration design, which we formulate as a sequential decision making problem tackled via deep reinforcement learning. Our simulations demonstrate the improvements achieved by our methodology in terms of ML performance, network resource savings, and swarm trajectory efficiency.
翻译:我们调查了一套通过无人驾驶航空器(无人驾驶飞行器)群集的地理分布和资源受限制的各类装置的培训机器学习模型。装置群中存在时间变化的数据差异和计算资源不足,促使我们的方法有四个关键部分:(一) 领导、工人和协调员无人驾驶航空器的分层无人驾驶航空器群;(二) 等级式嵌巢式个人化联合会学习(HN-PFL)系统设计。在微观一级,我们建议通过工人-领导核心网络层次进行个人化模型培训的分布式模型框架;(三) 合作使用无人驾驶航空器资源汇集,通过在无人驾驶飞行器群群中进行模型培训,解决设备计算不足的问题;(四) 模型/概念漂移,以模拟时间变化数据分布为模式。我们这样做时,我们考虑微观(即无人驾驶航空器级)和宏观(即暖级)个人化联合会系统设计。在微观一级,我们建议网络-意识型网络改进HN-PFFL,通过在深度消费中进行分化分析,我们通过空间网络内部性能化的学习过程,我们以优化的进度方法,我们通过深度学习了我们的研究周期性化的进度方法,我们以优化的进度学习了我们学习了我们的能源周期周期性效率。